skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poduval, Bala"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The high energy particles originating from the Sun, known as solar energetic particles (SEPs), contribute significantly to the space radiation environment, posing serious threats to astronauts and scientific instruments on board spacecraft. The mechanism that accelerates the SEPs to the observed energy ranges, their transport in the inner heliosphere, and the influence of suprathermal seed particle spectrum are open questions in heliophysics. Accurate predictions of the occurrences of SEP events well in advance are necessary to mitigate their adverse effects but prediction based on first principle models still remains a challenge. In this scenario, adopting a machine learning approach to SEP modeling and prediction is desirable. However, the lack of a balanced database of SEP events restrains this approach. We addressed this limitation by generating large data sets of synthetic SEP events sampled from the physics‐based model, Energetic Particle Radiation Environment Module (EPREM). Using this data, we developed neural networks‐based surrogate models to study the seed population parameter space. Our models, EPREM‐S, run thousands to millions of times faster (depending on computer hardware), making simulation‐based inference workflows practicable in SEP studies while providing predictive uncertainty estimates using a deep ensemble approach. 
    more » « less